ON THE ACTION OF THE Up OPERATOR ON THE LOCAL (AT p) REPRESENTATION ATTACHED TO CONGRUENCE LEVEL SIEGEL MODULAR FORMS

نویسنده

  • JIM BROWN
چکیده

In this article we study the action of the Up Hecke operator on the normalized spherical vector φ in the representation of GSp4(Qp) induced from a character on the Borel subgroup. We compute the Petersson norm of Upφ in terms of certain local L-values associated with φ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

GALOIS REPRESENTATIONS MODULO p AND COHOMOLOGY OF HILBERT MODULAR VARIETIES

The aim of this paper is to extend some arithmetic results on elliptic modular forms to the case of Hilbert modular forms. Among these results let’s mention : − the control of the image of the Galois representation modulo p [37][35], − Hida’s congruence criterion outside an explicit set of primes p [21], − the freeness of the integral cohomology of the Hilbert modular variety over certain local...

متن کامل

p-ADIC FAMILIES AND GALOIS REPRESENTATIONS FOR GSp(4) AND GL(2)

In this brief article we prove local-global compatibility for holomorphic Siegel modular forms with Iwahori level. In previous work we proved a weaker version of this result (up to a quadratic twist) and one of the goals of this article is to remove this quadratic twist by different methods, using p-adic families. We further study the local Galois representation at p for nonregular holomorphic ...

متن کامل

Siegel Modular Forms and Finite Symplectic Groups

The finite symplectic group Sp(2g) over the field of two elements has a natural representation on the vector space of Siegel modular forms of given weight for the principal congruence subgroup of level two. In this paper we decompose this representation, for various (small) values of the genus and the level, into irreducible representations. As a consequence we obtain uniqueness results for cer...

متن کامل

On Siegel modular forms of degree 2 with square-free level

In contrast to this situation, there is currently no satisfactory theory of local newforms for the group GSp(2, F ). As a consequence, there is no analogue of Atkin–Lehner theory for Siegel modular forms of degree 2. In this paper we shall present such a theory for the “square-free” case. In the local context this means that the representations in question are assumed to have nontrivial Iwahori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016